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ON THE SOLVABILITY OF NON-LINEAR SHALLOW SHELL EQUILIBRIUM PROBLEMS* 

1.1. VOROVICH and L.P. LEBEDEV 

The proof is obtained for a theorem of the existence of the solution of 
a shallow shell equilibrium problem under the most general edge fixing 
conditions. For instance, it is sufficient that the fixing conditions 
should ensure that there are no displacements of the shell as a rigid 
whole. However, certain constraints on the magnitude of the tangential 
external forces must be introduced here. 

A strict mathematical proof of the solvability of equilibrium problems 
in non-linear shallow shell theory and the convergence of different 
approximate methods for solving it is known under quite broad assumptions 
relative to the shell geometry, the magnitude of the load, and the boundary 
conditions /I, 2/. The main statement of the proof of the corresponding 
theorem is either to obtain an a priori estimate of the solution or to 
obtain an estimate of the shell total energy functional. Gaps that exist 
at this time in the mathematical theory of boundary value problems for 
shallow shell equations in displacements are due to the fact that the 
method developed in /l, 2/ for obtaining the estimate requires that the 
tangential displacements of the shell middle surface U? u be given on a 
"substantial" part of the boundary (in particular, on the whole boundary 
for a convex shell). 

1. In order not to complicate the main idea of the proof with details, we will consider 
the simplest and most widespread modification of the non-linear theory of isotropic, homo- 
geneous, shallow shells of constant thickness 2h in displacements, in which the geometry of 
the shell middle surface is identified with a plane /3/. The equilibrium equations have the 

DV"w + N, (k, - wu,,) + Ng (k, - wvU) - 2N,,w,, - F, = o 

vau + s (%I t UJ, + & ((k,w), + wxwrx -t 

P @a% + ~q,wqJ i- w,w, + w,w~~ -t F, = 0 

vav + +$ (U” -t- ux)v + -& (VW)” + wuwuv + 
P (hw), + i%%,,) + w,w?( + q,wfx + F, = 0 

Nl = Eh (1 - F~)-~ (e, + ye,), N, = oh (I - pa)-1 @a + 
fLed 

NIS = ‘I&h (1 + pL)-l %a, ~1 = U, + klw + 'law,' 
8% = Q + &+ -I- ‘iawva, e,, = uy + v, + WOW,, 

Here w is the normal displacement of the shell middle surface, u,u are the principal 
curvatures, E,p are the elastic constants, and F, are the external loads. 

Let the shell planform occupy a domain Q with piecewise-smooth boundaries aQ such that 
the Sobolev embedding theorems /4/ are satisfied for functions defined in Q. 

We will indicate the minimum necessary conditions for shell supports for which the main 
theorem will be obtained. 

Let w(st,pJ = 0 at three points (5*, Vi), i = 1, 2, 3 of the domain Q that do not lie on 
one line. Moreover, on the part of the boundary aQ1 which can in fact be missing, W Ilaq, = 
0. The subspace of functions from C(" (Q) satisfying these conditions will be denotedby C,@). 

For the tangential displacements u,v such boundary conditions will be the minimum 
necessary so that the Korn inequality for the plane problem of elasticity theory /5, 6/ is 
satisfied for them 

s (up +- Y* + uXa + uya + u,*+ uya)dx dy,< 

m s (uxa + v,,* + (uu + Up) dx dy 

(here and henceforth, the domain of integration Q is not indicated). 
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The sufficient conditions for this are stated in /S, 6/. In particular, the Korn in- 
equality will hold if on some part of the boundary of non-zero length #& 

u, v IOQ. = 0 (1.2) 
To be specific, we shall consider this condition to be satisfied. 
The set of vector functions U* (I&V), each of whose components lies in C@)(Q) satisfying 

condition (1.2) will be denoted by C,(*). 
We shall consider the remaining boundary conditions, notindicated here, as natural, i.e., 

obtained directly from the variational formulation of the problem. Since they are well-known, 
we shall not write them down. Some additional conditions on the boundary are certainly poss- 
ible, but they do not affect the course of the proof. 

2. Let us introduce energetic spaces. Let Hi be the subspace W&n(Q) X W&‘)(Q) obtained 
by closing the set C,(a) therein. The Korn inequality ensures that there is an equivalent 
norm in H, 

II~nif‘= Eh 

2 (1 - Ir”) s (et + eaa + 2we, + *A (I - CL) ha) do dy 

(el = 4, e, = vu, e,, = us + v,) 

The space H, is the subspace WJa)(Q) obtained by closing the set of functions c,(a) 
therein. The equivalent norm /7/ 

II w Ilt = ‘/a D j ((Va42 + W - P) (wc,~,, - lu’,,, ds dy 

is defined in the space. 
Norms in the spaces Hi induce scalar products which we denote by (a, b)H$. We denote the 

space HI x Ha by H and the variation of the function f by 6f. 
We will call the vector function u~ig satisfying the integrodifferential equation 

1 (M&l -I- M&,-t 3Mn& + A'&, + N,6e, + 2Nl,6el,)dxdy = (2.1) 

s (F& + P& + F&w dx dY + \ (f$u + f&b -I- f,6w) as 
ah 

MI = D h + Wr M, = D (x2 + pcl), M,, = D (i - 
PL) x 

Xl = -w,,, x2 = -wuv, x = --%I! 

the generalized solution of the shallow shell equilibrium problem, where the vector function 

&I = (6u,6v, 6w) is arbitrary, and ft are the external loads applied to the shell endfaces. 
We note that assignment of an appropriate load f, is not required on the part of the 

boundary where any of the components au, &,&uequals zero. But we shall not extract this 
part in writing the line integral since the appropriate part of the integral equals zero if 
fl is predetermined zero, say. 

It is sufficient for correctness in determining the generalized solution that the right- 
hand side of (2.1) be a continuous functional in 6u in H. In turn, it is sufficient for this 

be finite sums of 6 - functions and functions in aQ and Q, respectively, from L,. We shall 
call such a class of loads H*. 

For a generalized solution to exist It is necessary that the load belong to the class H*. 
If it exists, the classical solution of the problem will indeed be a generalized solution 

in the abwe-mentioned sense. In the general case the converse is not true. 
Underlying the proof of the theorem on solvability is the fact that stationary points of 

the shell total energy functional 

1 W =)I w 1%. + l/a s (N,E, t N,E, + 2Nne1,) dx dy - 

s (Flu + F,v + flaw) dx dy - s (flu + fzv + fs4 ds 
8Q 

are genealized solutions of the shell equilibrium problem. 

3. The structure and fundamental properties of the functional I remain the same for the 
boundary conditions under consideration as for the boundary conditions of the problem from 
/l, 2/. Consequently, it is sufficient to prove that 

Z(u)+ 00, if II UIIH + 00 (3.1) 
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to prove the existence theorem 
Let us prove this estimate. 
To shorten the writing we will introduce an element g=:H by the relationship 

(91 u)w = i (Flu + fzu + F,w) dxdy -tia,c (f,u + fzv + f+)ds 

by using the Riesz theorem on a continuous linear functional in Hilbert space and theproperties 
of an external load (the load belongs to the class H*). 

Then the functional I takes the form 

As in /2/, we will further consider the functional I on an "ellipsoid" T (R) of the 
space H obtained by deformation of a unit sphere S of the space H with centre at zero in the 
following way. in element (CR%, CR%, Rw), where c>O is a certain number that will be 
determined later, on the ellipsoid T(R) corresponds to the element (u,v, w)lying on the sphere 
S. For large R it is included within a sphere of radius Ra and contains a sphere of the 
space H of radius R with centre at zero within itself. Consequently, to prove (3.1) it is 
sufficient to show that 

I(u)-+m, uE T(R) R-too 

We note that from the mechanical viewpoint , the consideration of the energy functional 
I on T (8) results in an increase in the relative fraction of the energy of the part that is 
formed because of tangential displacements. 

Let us divide the sphere S of the space H into two parts & and S,. Let the inequality 

II u* IIH, > l/z, u* = (u, V) (3.2) 
be satisfied on S,. 

We consider the positive form 

1 (Nrer + N,s, t- 2Nr,s,,) d& (3.3) 

It is homogeneous in R for mapping on the ellipsoid T(R) The degree of its homogeneity 
is 4 while the degree of homogeneity of the remaining terms is not higher than two. 

on s, II wllrf,2 < V2. By virtue of the Sobolev embedding theorem /4/ here 

1 (w,' + w,,*) dzdy < m = const 

Since the integrand in (3.3) is a positive-definite form in the components of e,by virtue 
of (3.2) a constant c>O can always be selected on S, such that 

S (N&e + Nzceze + ~N,,,Q,,) drddy > 1 
where the subscript c denotes that cu, cv 

expressions. We will determine such a c. 

s (Nler + N,F, + 

is satisfied in the image of S, in T(R). 

are substituted in place of u,v in the appropriate 
In this case the inequality 

2N,,e,,) d&y ‘2 Rk on T, (R) 

And thereby on T,(K) for large R 

I (u) > VtRa (3.4) 

We will examine I(u) on S, = S/S,. The following inequalities hold: 

I(u) 3 !I lo I\:,- (g, u)H >, j/ " \\:I,- (g*, U*)H, - \I g3 \I \I " \\H. 

k*? +)H,= &u + F,v)drdy -i 1 (flu -t fgv)ds 
aQ 

Under the substitution (u, v, w)-+ (cu, cv, 10) 

Consequently 

z @) s r/z R'(1 - c n g* l\H,)-- l/z I\ g, \\H$ 

on T,(R) is the image of Sz in T(R). 
If the external tangential loads are such that 
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c Ii g* IIH, < ‘/a (3.5) 

then for sufficiently large R we have Z(u)>‘lgRa on T*(R). 
This last inequality, together with estimate (3.3), completestheproof of (3.1). 
As in /l/, the following fundamental theorem therefore results. 

Theorem 1. Let the tangential loads on the shell be sufficiently small, i.e., the in- 
equality (3.5) satisfied, and all the loads belong to the class H*. In this case 

a) there exists at least one generalized solution of the equilibrium problem of a shell 
with finite energy; 

b) the sequence u, minimizing the functional Z(u) contains a subsequence that con- 
verges strongly in H to the generalized solution of the problem; 

c) the system of equations of the approximate solution oftheproblem by the Ritz method 
(and thereby by the Bubnov-Galerkin method also) is solvable at each stage and contains a 
subsequence which converges strongly in H to the generalized solution. 

We will not present the proof of the theorem here since after the proof of the relation 
(3.1) the rest of the proof is carried over from /l/ word for word. The remaining results 
from /l/ are also carried over without any difficulties in this case. 

Remark. Theorem 1 holds without any constraints for shells to which only the normal loads 

fsv F, are applied. 

4. We will examine the question of the magnitude of the external tangential loads in 
greater detail. Their estimate, which is sufficient for the problem to be solvable, can be 
obtained most conveniently within the framework of that formulation of the problem when the 
tangential displacements are expressed in terms-of w by means of (1.1). Then the functional 
I depends only on W. It is shown in /l/ that even in this case the stationary points of the 
functional Z(w) yield a generalized solution of the problem under consideration in the 
formulation mentioned. It is shown there also that the solution u* = (u,u) of the equation 
is separated into the sum u* = uO* +ul* +u,*, where the subscript equals the degree of hom- 
ogeneity in the variable w for the generalized solution of system (1.1). The part u2* = (u2, 
u,) which is determined by the equation 

s WA + N2es + 2N,,e,,) dxdy = 0 

plays the most important role in obtaining the necessary estimate. 
The estimate 

ju:&dy=+,“dxdy, jv;vdxdy$jw,“dxdy 

can be obtained from this equation. 
For a given modification of the solution of the problem of minimizing the energy func- 

tional, an estimate of part of the functional must be made on the sphere 11 w(/H, = 1./l/.Inorder 
for the functional Z(w) to be increasing, it is sufficient to show that the inequality 

II wnt- s (Flus + Fsv,) dx dy - s (f,u, + f,v,) ap a a = comt > 0 
8Q 

is satisfied on the sphere IIwIIH,= 1. 
Taking account of the Korn inequality as well as (4.1), the integral terms can be 

estimated here as follows: 

A = ) s @‘IUS + Fsvs) dx dy f A (flus + f,vs) ds [ < 

ml (II pl lb. Q + II Fs IL. Q + ll fl IL Q + 

1 fs b Q) (s (& + & + 2 (usv + Q) dx dy)“‘= 

mJ ( j O& f v’,, + 2 bsv + vw)3 dx dy)“’ c 
mlB (1 (wls + w,,*)~ dx &p, p > 1 

where Ilgll,,Q is the norm of g in L,(Q). 

BY virtue of the Sobolev embedding theorem in WJ’)(Q) 

( j (w,z + q3’ da: d&“s < m, l ((V’w)’ + 

Consequently 
2 (1 - P) (%W,, - &) dx dy 



640 

A :< 2m,m,B I) u lla*VD 

Finally, we have from (4.2) 

\\ I'1 11% Q + \I p, \I% Q -1. // fl iip. Q + I\/, 1lp.Q -<D (1 - 4/(2??Z,m,) 

We note that for a similar change in the domain Q (together with the domain in which the 
boundary conditions are specified) with similarity coefficient 1, the constants mt depend on 
1 as follows: 

m, = mlOlr mz = m,"lZ 

All the results obtained above remain valid even for the modification of the non-linear 
shallow shell theory considered in /2/, including also for the boundary conditions that 
include shell elastic support conditions. 

5. We will make just one more remark, Estimation of the total energy functional does 
not ensure on a priori estimate of all the generalized solutions of the problem. Additional 
sufficient conditions can be indicated that ensure such a constraint. This is the upper limit 
of the integral 

s (k;” + k,2)dxdy 

The constant, which should be smaller than this integral , depends on the ratio between 
the shell thickness and its characteristic dimension and the first natural frequency of the 
transverse vibrations of a linear shell. 

In addition, we note that geometric connections can generally be removed from the tangen- 
tial displacements u, v. Here free "stiff" displacements of the form 

ug = a + dy, L'~ = b - cl~ (5.1) 
of the shell appear, where a,b,d are arbitrary constants. If these displacements are added 
to those already existing in the shell, its stresses and strains do not change here. It can 
be shown that selfequilibration of the tangential load is required for the problem to be 
solvable in this case. Namely, that for alltheconstants a, b, d 

This condition meansthatthe principal vectorandmoment (planar:) of the tangential 
forces equal zero. 

To obtain the existence theorem in this case is is necessary to introduce the factor- 
space H,, in place ofH,,which has the same norm as in H,, and a vector-function of the form 
(5.1) is its kernel. 

Reasoning similar to that performed in /I/ results in the following theorem. 

Theorem 2. Let a load acting on a shell belong to the class H* and let condition (3.5) 
be satisfied. Then for a generalized solution of the shallow shell equilibrium problem to 
exist when there are no geometric connections in the tangential variables u, v it is necess- 
ary and sufficient that the tangential load be selfequilibrated, i.e, that condition (5.2) 
be satisfied. 

We note that the solution of the equilibrium problem for a shell not at all free of 
geometric connections has no meaning in a similar formulation. 

The reasons are as follows. Real free displacements of a shell as a rigid whole cause 
strains and stresses in the shell in this modification of the equations. On the other hand 
if we proceed formally and introduce stiff displacements as functions that convert the quad- 
ratic part of the energy to zero, then a set of "stiff" displacements appears on which the 
work of the external forces must equal zero. But these integral conditions on the forces 
have no mechanical meaning. Moreover, tangential stresses different from zero appear in the 
shell in such stiff displacements. 
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FORCED VIBRATIONS OF A PIEZOCERAMIC CYLINDRICAL SHELL WITH 
LONGITUDINAL POLARIZATION* 

N.N. RCGACHEVA 

Forced vibrations of a circular cylindrical piezoceramic shell with 
longitudinal polarization caused by an electric load applied to electrodes 
on the shell edge are considered. A numerical computation is performed 
by the partition method for the electroelastic state, and values of the 
coefficient of electromechanical coupling obtained by different formulas 
are compared. 

1. We select the system of orthogonal curvilinear dimensionless coordinates 5, cp such 
that the E-line coincides with the generatrix and the q-line with the directrix of the 
cylinder. 

We write down the system of equations for the electroelastic shell under consideration 
in the selected coordinates and we omit here certain equations not used below. 

The equilibrium equations 

dT,,ldE - n&,, + Au,, = 0 

Tzn f e2dNl,ldE - ePnN2,, -j- ho,, = 0 

dS,,,ld~ + nT,, - N,,, + Au, = 0 

N,, = dWdt 

(1.1) 

(1.2) 

0.3) 

The electroelasticity relationships 

T,, = sin + vpsln - El,, T,, = (I (5" + vlsnJ - c&l, 

S - Sz,n = (%I - I*” - d,,%,c,-%,)M% 

Gin = --E~x~,, 

D,, = eggT hdJIEln + T,, + dl, (dJITl, 

Dm = .%lT @,d,,)-‘Em f d,bd,,-‘Sm 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

The electrostatics equations 

dD,,lde - nDs, = 0 

E,, = --dlp,ld& E,, = -nip, 

(1.9) 

(1.10) 

The strain-displacement formulas 

E ,,, = du,ld& e,, = -nv, - qw, 

o, = dv,ldE f nu, 
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(1.11) 

(1.12) 


